Nitric oxide metabolism in Neisseria meningitidis.
نویسندگان
چکیده
Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c' are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress.
منابع مشابه
A snapshot of a pathogenic bacterium mid-evolution: Neisseria meningitidis is becoming a nitric oxide-tolerant aerobe.
Members of the Neisseria genus typically display the ability to carry out denitrification of nitrite to nitrous oxide as an alternative to oxygen respiration when oxygen is depleted. The key enzymes nitrite and nitric oxide reductase are found across the Neisseria genus. Within Neisseria meningitidis, however, a number of research groups have found that a significant proportion of strains lack ...
متن کاملThe nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification.
We have analyzed the extent of regulation by the nitric oxide (NO)-sensitive repressor NsrR from Neisseria meningitidis MC58, using microarray analysis. Target genes that appeared to be regulated by NsrR, based on a comparison between an nsrR mutant and a wild-type strain, were further investigated by quantitative real-time PCR, revealing a very compact set of genes, as follows: norB (encoding ...
متن کاملRegulation of denitrification genes in Neisseria meningitidis by nitric oxide and the repressor NsrR.
The human pathogen Neisseria meningitidis is capable of growth using the denitrification of nitrite to nitrous oxide under microaerobic conditions. This process is catalyzed by two reductases: nitrite reductase (encoded by aniA) and nitric oxide (NO) reductase (encoded by norB). Here, we show that in N. meningitidis MC58 norB is regulated by nitric oxide via the product of gene NMB0437 which en...
متن کاملNitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa.
Nitric oxide (NO) contributes to mammalian host defense by direct microbicidal activity and as a signaling molecule of innate immune responses. Macrophages produce NO via the inducible NO synthase (iNOS). The genome of Neisseria meningitidis includes two genes, norB (encoding nitric oxide reductase) and cycP (encoding cytochrome c'), both of which detoxify NO in pure cultures of N. meningitidis...
متن کاملMicroaerobic denitrification in Neisseria meningitidis.
The major aetiological agent of human bacterial meningitis is Neisseria meningitidis. During the course of disease and host colonization, the bacterium has to withstand limited oxygen availability. Nitrogen oxide and nitrogen oxyanions are thought to be present, which may constitute an alternative sink for electrons from the N. meningitidis respiratory chain. A partial denitrification pathway i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 11 شماره
صفحات -
تاریخ انتشار 2002